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Random Walks on Random Lattices with Traps 

V. Halpern 1 

A critical examination is presented of the continuous time random walk 
(CTRW) approximation and of frequency-dependent effective transition rate 
methods for calculating the configurational average of the Laplace transform of 
the probability P(s, t I So) that a particle performing a random walk will be at site 
s time t after it reached the site s 0. Some exact results are derived for the form of 
P(s , t [s0)  at long times, and these indicate that the effective transition rate 
methods are the better approximation for systems with symmetric effective 
hopping rates, while the CTRW approximation is better for systems containing 
traps, i.e., states that are much easier to enter than to leave. The implications of 
these results for calculations of transient currents and of the ac conductivity for 
amorphous semiconductors are discussed. 

KEY WORDS: Random walk; amorphous semiconductors; ac conductiv- 
ity; transient currents. 

1. INTRODUCTION 

The analysis of the motion of a particle performing a random walk on a 
lattice with random transition rates between sites is extremely difficult. The 
most widely used approximation methods for calculating the average be- 
havior of such a particle can be divided into two classes, according to 
whether they concentrate on the properties of sites or of bonds. While for 
motion with fixed transition rates there is a close correspondence between 
site percolation and bond percolation, ~ ~ this is not the case when the 
transition rates are a random variable. Since we are interested in the 
transitions of particles along bonds between sites, the approaches based on 
bonds might seem the most appropriate. However, as we show in this 
paper, this is not always the case, especially for systems containing states 
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that are much more difficult to enter than to leave, which we refer to as 
traps. 

The structure of this paper is as follows. In Section 2, we derive in 
matrix form exact equations for the particle's motion, using a continuous 
time random walk (CTRW) approach that is applicable to both Markovian 
and non-Markovian processes. The CTRW approximation of Scher, Lax, 
and Montroll, (2'3) which is essentially a single site approximation, (4) is 
shown to involve a decoupling of configurational averages in the matrix 
equation. The nature of the weighted average that this involves is examined 
for Markovian systems at short and long times. In Section 3 we outline two 
average bond methods for solving approximately the matrix equation, 
namely the average T-matrix approximation (ATA) (5) and the coherent 
potential approximation (CPA), (6) applied to homomorphic clusters of 
pairs of atoms. (7-11) Here, too, we examine the weighting of the averages 
used at short and long times. In Section 4, we derive some new exact results 
for the long time behavior of Markovian systems, and the consequences of 
these results for the correct weighting of averages are discussed in Section 5. 
We also discuss there the implications of our results for time-dependent 
transport in amorphous semiconductors, and our conclusions are summa- 
rized in Section 6. 

2. THE CONTINUOUS TIME RANDOM WALK (CTRW) METHOD 

We start our analysis with the exact CTRW approach to the hopping 
of particles between localized states. Let P(s, t ls0) be the probability that a 
particle is at site s time t after it reached so, and R(s, t ls0) the probability 
density that is reaches s at such a time. In addition, let ~s,(t) be the 
probability that a particle remains at site s' and is still there time t after it 
arrived there, and qA,(t) and q~s,(s- s' , t)  the probability densities that it 
leaves s' and that it makes a transition through s - s' to site s, respectively, 
at this time t. Then P and R satisfy the equations 

e(s,  t l So) = fotR (s, ~" I So)~s(t - ~) d~- (1) 

f0' ' R(s,t  Is0) = 2 R ( s , ~ ' l S o ) ~ s , ( s - s ' , t - ' r ) d ' r + ~ s , s o t 3 ( t - O + )  (2) 
S r 

A 

We take the Laplace transforms of these equations, denoting by f (u )  the 
transform of f ( t ) .  The resulting equations can be written in the simple 
matrix form 

P = GoR (3) 

R = I + VGoR (4) 
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where the matrices R(u),, P(u), Go(u ), and VGo(u ) have for their (s,s') 
A A 

elements, respectively, R(s, u [ s'), P(s, u ]s'), r s, and q~s,(s - s', u). It 
follows from equations (3) and (4) that 

P =  G o+ GoVP = G o + PVG o (5) 

The CTRW approximation of Scher, Lax, and Montroll (3'4) involves 
replacing qb~,(t) and ~ps,(s - s', t) by their configurational averages (denoted 
by ( ) )  over s', 

~b(t) = (dP~,(t)>, ~p(s -- s', t) = (~ps,(s -- s', t)> (6) 

Such a procedure corresponds to the decoupling of configurational aver- 
ages in equation (5) to give 

<P> ~ (Go> + <P>< VGo> (7) 

In order to examine the nature of this approximation, it is convenient to 
restrict our attention to Markovian systems. For these, Eq. (5) is the 
Laplace transform of the master equation with V~,~, the probability per unit 
time of a transition from s' to s, and 

Go(u ) = (uI + a ) - I  (8) 

where A is a diagonal matrix whose (s, s) element is 

~ = ~ Vs,~ = probability of a transition from s per unit time (9) 
S j 

Thus, the averages in Eq. (7) give weight (X~, + u)-~ to transitions from site 
s' and V,x/(~ s, + u) to a transition from s' to s. For very large values of lul, 
which determine the behavior of the system at very short times, this implies 
giving equal weight to each site. However, as [u[--->0, which determines 
what happens as t---> oe, the transitions from site s are given a relative 
weight 1/?~s inversely proportional to the transition rate from it, so that the 
averages are dominated by the sites that are most difficult to leave. The 
implications of such an averaging procedure will be discussed in Section 5. 

3. AVERAGE T-MATRIX AND COHERENT MEDIUM 
APPROXIMATIONS 

An alternative approach to the approximate calculation of ( P >  from 
Eq. (5) is to regard P as the Green's function of the operator A = V -  A, 

P = ( u I -  A) - 1 =  [ u I -  ( V -  A ) ] - I  (10) 

It is well known that for random alloys the average T-matrix approxi- 
mation (ATA) (5) and coherent potential approximation (CPA) (6) provide 
excellent approximation for the calculation of (P>.  The basis of these 
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methods is to define an effective medium in terms of an operator A e having 
translational symmetry, and express P in terms of the Green's function G e 
of A e by 

t = O e "[- G e T G  e (11) 
I f  A - A. can be expressed as a sum of elements each associated with a 
given cluster of atoms, A - A .  -- ~kWk say, a matrix t k can be defined in 
terms of w~ and the matrix ge of G e between the sites of the cluster, and on 
writing T = ~kT~ one finds (13) that 

Tk = t k ( l  + G e ~  Tt)  (12) 
l@k 

so that 

(Tk)----(tk)(l+GeE T,]+ ((tk--(tk))GeE (T,-(TI))) (13) l~k I l~k 
The single-cluster approximations involve ignoring the second term in Eq. 
(13), i.e., in ignoring the correlation between fluctuations of A associated 
with different clusters. In that case, we readily find that 

( P ) ~ ( z -  A ~ -  S )  -1 (14) 

where the matrix s of S between the sites of the cluster is given by 

s = ( I  + ( t k ) g e ) - l ( t k )  (15) 

with 

( tk )  = ( ( I -  Wkge)-~Wk) (16) 

The ATA uses Eqs. (15) and (16) directly for a given Ae, while the CPA 
defines a coherent medium by the requirement that ( tk) = 0. 

In the original applications of this method, the clusters k were taken as 
single atoms, but for our problem a cluster consists of a pair of atoms with 
a bond between them, provided that only hopping between adjacent sites is 
allowed.(7-9) Simple calculations then show that, in our notation and with 
the diagonal and off-diagonal elements of ge denoted by go and gl, 
respectively, 

( t ) = t  a - 1  1 t a= (17) 
1 - 1 l + 2 ( g o - g l ) ( v - v ~ )  

Here, V e is the value of V corresponding to Ae, and 

v =  + v . )  (18) 

is the mean transition rate along a bond between adjacent sites s and s'. 
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In order to examine the weighting of different bonds in this averaging 
procedure, we consider hypercubic lattices in d dimensions, with each site 
having n = 2d nearest neighbors, in which case (7) 

go - gl = (1 - Ugo) /nV e (19) 

As ]u]--> oc, g o a l ~ u ,  and so t a is proportional to ( 1 7 -  V~), so that at short 
times all bonds contribute equally to the average. As I u[ ---> 0, ugo--->O, and 
there is a difference between one-dimensional and multidimensional sys- 
tems. In one dimension, t a is proportional to ( 1 -  Ve/17 ), and so is 
dominated by bonds with small V, but if n > 2 the contribution to t~ from a 
bond with 17 = 0, for instance, is only (n + 2 ) / ( n -  2) times that from a 
bond with I ? = 2 V e. Such a result is physically very reasonable, since a 
particle can avoid difficult steps in two or three dimensions but not in one 
dimension. 

4, SOME EXACT RESULTS FOR THE LONG-TIME BEHAVIOR 

In the last two sections, we have seen that different methods of 
approximation give different weights to the various sites and transitions, 
especially in the limit u ~ 0 which determines the behavior of the system at 
long times. We now derive some exact results for the simplest case, namely, 
that of a Markovian system, containing N sites s, for which the N 
eigenvalues of A are all real and distinct. Our results can be generalized by 
methods parallel to those used by Feller (14) for finite Markov chains. In 
view of Gershgorin's theorem (15) and Eq. (9), the eigenvalues of A = V - A 
are all nonpositive, and we denote them by - a  (k), with a (~) < a (k+ 1). The 
corresponding right and left eigenvectors of A, x (k) and y(k), are defined by 

A x  (k) = - a(k)x (k), f(k)A = -- a(k)~ (k) (20) 

and the Green's function of A can be written in the form 

(u I  - A ) - ' =  ~CkX(k)~k) l (u  + a (•)), c, = 1/(y(k)X (k)) (21) 
k 

It follows from equation (10) and inversion of the Laplace transform that 

P(s, t l s') = ~ ckx~(*)y~(,*)exp(- a (*)t) (22) 
k 

and at long times the terms with small a will dominate this sum. 
Although A is a random matrix, we can find certain features of its 

eigenvectors for small a. From Eq. (9) and the fact that A = V -  A it 
follows that ~s,As,,s vanishes. Hence a (~ = 0, and y(O) has all its elements 
equal. If A is symmetric, x (k) = y(k), and so, in view of Eqs. (22) and (21), all 
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states make comparable contributions to P(s, t [ s') for large t. However, this 
is not true for a system that contains trapping states. For instance, in a 
system containing a single trap state s, and such that A s s, = hA s's with fixed 
h while A~,,,s, = A~,,s,, if s' and s" both differ from s, we can find x (~ exactly. 
If we choose x~ (~ = h, then x~, ~ = 1 if s ' :~ s, and this result can be 
generalized to systems containing a series of such traps with no direct 
transitions between them. It then follows from Eq. (22) that the relative 
weight of each trap state is approximately inversely proportional to the 
transition rate out of it. This result is very reasonable on physical grounds, 
since in systems containing traps a particle will spend most of its time in the 
traps. 

Another type of system for which x (~ can be found exactly is that 
originally considered by Scher and Lax, (3) in which t)~,(s- s', t) = p ( s -  s') 
~s,(t). This is a reasonable model for systems in which transitions between 
localized states take place via excitation to a band of extended states. For 
such a system, A = M D ,  where M is a symmetric translationally invariant 
matrix, i.e., Ms,~, = M(s - s'), and has a right eigenvalue y(0) with all its 
elements equal. Moreover, D is a diagonal matrix with D~,, = X~, and so 
x~ (~ is proportional to 1/)t,. Thus, for this type of system the relative 
weight of each trap state as t ~ oe is exactly proportional to the inverse of 
the transition rate out of it. 

5. DISCUSSION 

The results derived in the last section can be used to test the suitability 
of different approximation methods for the description of how different 
types of systems behave at long times or low frequencies. We are usually 
interested in the rate at which a system approaches its limiting state as 
t ~  oe, so that the requirement that an approximation give the correct 
limiting value as t ~ oe is a necessary, but not a sufficient, condition for its 
suitability. The methods that we consider are the CTRW approximation 
described in Section 2, and effective bond approximations, including in 
particular the CPA method described in Section 3, which we call the 
coherent bond approximation (CBA). 

For systems in which all the transition rates are symmetric, i.e., 
Vs, s, = Vs,,S, we found in Section 4 that all states contribute with similar 
weight to P(s, t I so) at long times, and so an averaging procedure is required 
that gives all states a similar weighting. Thus, the CTRW approximation, 
which gives most weight to states that are difficult to leave even though 
these are also difficult to enter, cannot be expected to be accurate. Effective 
bond methods should be much better for this type of system, but even here 
a word of warning is required. As the frequency tends to zero, or t ~ oe, the 
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system's properties are expected to be dominated by states on the critical 
percolation path, (~6) so that in multidimensional systems states not on this 
path should be excluded from the average. In the opposite extreme case of 
systems with all states fairly accessible, the analysis of Section 4 indicates 
that it is the states most difficult to leave, which can be regarded as traps, 
that dominate P(s, t  [So) at long times. In this case, it is the CTRW 
approximation that involves averages with approximately the correct 
weights, and so should provide a reasonable approximation. There are two 
basic reasons for the failure of the effective bond methods for these 
systems. Firstly, the CBA method neglects the correlations between fluctua- 
tions in the transition rates for different bonds, as noted after Eq. (13), 
while such correlations are an essential feature of the bonds from trap 
states. Secondly, in the CBA each bond is characterized by a symmetric 
average of the transition rates along it in the two directions, and such a 
procedure cannot take account of the distinctive properties of trap states. 
We note in passing that our conclusions about the range of validity of the 
CTRW approximation agree with those of Alexander, (iv) who used rather 
different arguments and did not consider effective bond methods. 

In the application of our results to time-dependent transport in amor- 
phous semiconductors, a clear distinction must be made between the ac 
conductivity o(~0) and the transient current I(t)  observed after the genera- 
tion of a sheet of charge carriers. This distinction is often overlooked 
because there is a formal connection between these two quantities when 
they refer to the same system. (18) However, while a(~0) refers to a system in 
which the occupancy of the different states is close to that in thermal 
equilibrium, the transient currents are often measured for systems very far 
from such equilibrium populations. 

For the ac conductivity of a system at temperature T and with Fermi 
energy e F, if the states at s and s' have energies e and e', respectively, then 
according to Butcher's analysis (19) the ratio of the effective transition rates 
is 

Vs,s,/Vs,,s = cosh2[ �89 f l ( r  CF)]/c~ �89 13(r - CF)] (23) 

where fl = 1 / k  B T. This ratio is close to unity if a(~) is dominated either by 
charge carriers close to CF or by those within a few k B T of the mobility edge 
of a band, for instance, and so for most real systems. Hence, the CBA 
method should be much more accurate than the CTRW approximation for 
the calculation of the low-frequency ac conductivity of amorphous semi- 
conductors. 

By contrast, a variety of different situations are possible for the 
transient currents I(t) that follow the injection of a sheet of charge carriers. 
For the sake of definiteness, we consider systems in which I(t)  is due to the 
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motion of electrons, but our results can easily be generalized. If the injected 
electrons rapidly thermalize, and then have a quasiequilibrium distribution 
with constant effective Fermi level CFn until they recombine, Eq. (23) will 
apply with eFn replacing e F. Hence, provided that the electrons hop only 
between adjacent sites, the CBA method will be much more accurate in this 
case than the CTRW approximation. Another type of system for which this 
will be true is one in which the electrons are all in a band of localized states 
only a few k B T wide, with direct transitions between them. A different type 
of system, which has been extensively discussed recently, (20,22) is one where 
the electrons gradually sink lower and lower into the conduction band's tail 
of localized states, which they can only leave by thermal excitation to states 
above the mobility edge. For such systems, the occupation statistics of the 
states are far from equilibrium, and the deeper states behave as traps with 
strongly asymmetric transition probabilities. In this case, our analysis 
confirms the assumption (2~ that the CTRW approximation should be 
fairly reliable in the long time limit, while effective bond methods will be 
quite inappropriate. Intermediate cases are also possible, such as systems in 
which the electrons occupy states in a band tail or impurity band that is 
more than a few k B T wide, and move by direct transitions between the 
localized states rather than by excitation to above a mobility edge. In this 
situation, the transition rates are not symmetric and traps will exist, but 
some of them are isolated in space and so also difficult to enter. Thus, 
neither the CTRW approximation, which gives too much weight to such 
isolated states, nor the CBA method, which ignores the correlation between 
the transition rates in different directions from a state near the bottom of 
the band, will be reliable approximations in this case. 

6. CONCLUSIONS 

From our comparison of the weightings used in the averages employed 
by the CTRW approximation and in the coherent band approximation 
(CBA) with those appropriate to the exact solution of the master equation 
at long times, we conclude that which method provides the better approxi- 
mation depends on the details of the system considered. For systems in 
which the effective transition rate from state s to state s' approximately 
equals that from s' to s, the CBA is much more accurate, but for systems 
whose behavior at long times is dominated by trap states s that are much 
more difficult to enter than to leave the CTRW approximation is the 
appropriate one, while there are systems for which neither type of method 
is reliable. It follows that the CBA method is preferable for calculations of 
the ac conductivity in most amorphous semiconductors and of transient 
currents if the charge carriers hop in a narrow band. On the other hand, the 
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C T R W  approximation is much the more accurate one for calculating the 
transient currents if the charge carriers are spread over a wide band of 
localized states and can only move  from one state to another by thermal 
excitation to states above a mobility edge. 
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